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[t is shown that for each n-dimensional subspace G of C(7) which contains a
strictly positive function there exists a quadrature formula with at most # — 1 points
and positive weights which is exact for all ge G (n=2 2. T has at most n—1 com-
ponents}. Since unicity of best one-sided L -approximations from G is equivalent 1o
the non-existence of such quadrature formulae, @ general non-unicity theorem is
obtained. This result does not hold if 7 has more than n — | components. ¢ 19&s

Academic Press. Inc.

INTRODUCTION

The connection of unicity in one-sided L,-approximation with the
existence of quadrature formulae is investigated. Let an n-dimensional sub-
space G of C(T) (T a compact metric space) which contains a strictly
positive function and fe C(T) be given. A function g,e G with g, <[ is
called a best one-sided L ,-approximation of fif | f—g,|, <|f—gl, for all
ge G with g <.

Applying a characterization on unique solutions of semi-infinite
optimization problems given in [7] to this approximation problem. the
following characterization is obtained: Every fe C(T) has a unique (resp.
strongly unique) best one-sided L,-approximation from G if and only if
there does not exist a quadrature formula of at most n —1 points with
positive weights which is exact for all ge G.

We show that if n>2 and T has at most n — 1 components, then for each
G there exists such a quadrature formula. By applying the above charac-
terization we obtain a general non-unicity result on one-sided L,-
approximation. Special cases of this theorem were proved for T=[u, b]
and under the additional assumption that G is a Haar subspace by DeVore
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[2]. a subspace of splines by Pinkus [9], and a weak Chebyshev subspace
by Strauss [11].

Finally, it is shown that the above results do not hold 1if 7 has more than
in— 1 components.

The main results in this paper have been presented in a talk at the
GAMM meeting in 1984, An abstract of this talk i1s given in [6].

1. PRELIMINARIES

We first recall a result on global unicity in semi-infinite optimization
given in [ 7] which will be applied to one-sided L,-approximation. To do
this we need the following notation.

For a compact metric spacec wc denote by C(7) (resp. C(7, R")) the
space af all the continuous mappings h: T - R (resp. B: T—R"). Let
peR", BeC(T,R"), feC(T), and o= (p, B. /) be given. We¢ consider the
corresponding linear semi-infinite optimization problem LM(c).

Minimize {p.x>= Y p,x, subject to
i !
{B(t). x> < firyfor all re 1.

The optimization problem LM(ag) is said to satisfy the Slater-condition
there exists a vector v R” such that

Bl vy < fl1) for all reT.

We set L= {g: LM(0) has a solution and satisfies the Slater-condition|. A
solution x e R” of LM(s) is called strongly unigue if there exists a constant
K >0 such that for all feasible points yve R" (i.c., {B(s). 1> < f{1) for all
reT),

{poyrzdp.xy+ Ky v
The following unicity result was given in [7].
THEOREM 1. For a fixed vector pe R p#0, and « fixed mapping
Be C(T,R"), B#£0, the following statements ure equivalent:

(1) For every fe C(TY with o =(p, B, [Ye L the optimization problem
L.M(a) has a unique solution.

(2)  For cvery fe C(T) with 6 =(p, B, fYe L the optimization problem
LM(c) has a strongly unique solution.
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(3) There do not exist points t,..,1, €T and real numbers
aysend, 20 such that

n

o
—pP= Z a;B(1,).

i=1

It is well known that one-sided L,-approximation is a special semi-
infinite optimization problem.

Let u be a strictly positive measure on T (i.c., j'dey >0 for all fe C(T)
with /20 and /#0). Furthermore, let the L ,-norm of a function fe C(T)
be defined by

=] 171 dn

Now, let G =span{g,..., g, | be an n-dimensional subspace of C(T) and
fe C(T). The one-sided L -approximation problem is to find a function
g,€G with g, <, called best one-sided L-approximation of f from G, such
that for all ge G with g<f.

1 f—gl = »i‘f‘gf .
A function g,e G with g, <[ 'Is called a strongly unique best one-sided L,-
approximation of f from G, if there exists a constant K> 0 such that for ali
ge G with g </,

If—gh=lf—gh+Klg—g

[t is easy to see that this approximation problem can be written as an
optimization problem LM(c), where

p=<i gldu,---,—J g,,du>
YT T
and

B(t)={(g(1),...g, (1)) forall reT.

Obviously, if G contains a strictly positive function, then LM(o) satisfies
the Slater-condition for all f'e C(T).

2. THE MAIN RESuLTS
The following global unicity result on one-sided L -approximation is an

immediate consequence of Theorem 1.

64045 X-6
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THEOREM 2. For an n-dimensional subspace G of C(T) which contains a

strictly positive function the following statements are equivalent:

(1) Every fe C(T) has a unique best one-sided L -approximation from
G.

(2) Every feC(T) has u strongly unique best one-sided L,-
approximation from G.

(3) There do not exist points t,,..t, €T and real numbers
a,,.., a, =0 such that

~ i 1
gdu= Y a,glt,)  JorallgeG
-

=1

(Le., there does not exist a quadrature formula of ar most n — | points and
with positive weights which is exact for all g€ G).

We now give a theorem on the existence of quadrature formulae as in
Theorem 2 which will be proved later.

THEOREM 3. Let n=2, T have at most n— | components, and G be an n-
dimensional subspace of C(T) swhich contains a strictly positive function.
Then there exists a quadrature formula of at most n— 1 points and with
positive weights which is exact for all ge G.

Combining Theorem 2 and Theorem 3 we immediately obtain the follow-
ing general non-unicity result on one-sided L ,-approximation.

COROLLARY 4. Let n=2, T have at most n— 1 components, and G be an
n-dimensional subspace of C(T) which contains a strictly positive function.
Then there exists a function in C(T) which has more than one best one-sided
L -approximation from G.

Remark 5. (1)Corollary4 was proved in the special case when
T=1{a, b} and under the additional assumption that & is a Haar subspacc
by DeVore [2], that G is a subspace of splines by Pinkus [9], and that G
1s a weak Chebyshev subspace (i.e., each function g€ G has at most #n — |
sign changes) by Strauss [11]. Note that Haar subspaces and subspaces of
splines are weak Chebyshev.

(2) Theorem 2 shows that if G is a one-dimensional subspace of C(7)
which contains a strictly positive function, then every fe C(T) has a
strongly unique best one-sided L -approximation from G.

(3) Note that Corollary 4 is also valid for functions n several
variables, e.g., for subspaces of polynomials or splines in several variables.

In the following we will give a proof of Theorem 3. To do this we need
the following well-known results (see, e.g., Brosowski [ 1] and Hettich and
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Zencke [4]). For a subset 4 of R” we denote by cone(A4) the convex cone
generated by A.

LEmMMA 6 (Farkas). Ler vectors z4,z,.,2,€R" be given. Then the
Jollowing statements are equivalent:
(1) zgecone({z;ii=1,.,m}).
(2) There does not exist a vector y € R" such that
{(zp, 3> <0
and
{z;,v> =0, i=1,.,m
For a subset A of R" we denote by conv(A) the convex hull of A.

LEMMA 7. For a compact subset Z of R" the following statements are
equivalent:
{1} Oeconv(Z).

1
(2) There does not exist a vector y € R" such that
{z,y>>0 forall ze Z

Proof of Theorem 3. Since G contains a strictly positive function, we
may choose a basis {g,,.., g, of G such that

g, (1)>0 forall reT.

Since u is a strictly positive measure, we have j»,» g, du> 0. Therefore, there
exist real numbers b,,..., b, ; such that

| (@ +b&,)du=0, i=1_,n—1
T
Wesetg,=g,+b,g,,i=1.,n—1,and g,=g,. Then {g,,..,g,} is a basis
of G such that
(1) [;gdu=0i=1.,n-1
Then condition (3) in Theorem 2 says that

(2) there do not exist points f,,.,1, €T and real numbers
Uy d, 1 20 such that

no 1

J gidu= Y agi(t,), j=l..,n
.

i=1
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We set x=(0,.., 0, {,g,du) and G(1)=(g,(1).... g,(2)) for all 7e T. Then
condition (2) is equivalent to the following condition:

(3) there do not exist points 7,.... 7, ;€ T such that

xecone(1G(r,): i=1,..n—1})

By Lemma 6 condition (3) is equivalent to the following condition:

(4) for all points ¢,..., 1, €T there exist a vector re R"” such that

#H

x, 1y <0
and
(G(t), y> =0, i=1,..,n—1.

We set G’zspan{gl,..., g, 1. Then condition (4) is equivalent to the
following condition:

(5) for all points ¢,,... ¢, ,€ T there exists a function g e G such that

£2(t,)>0, i=1l..,n~1

In fact, if (5) holds, then there exist real numbers v ..., v, , such that

Since g,(t)>0 for all re T, we may choose a sufficiently small negative
number y, such that

H

Z y,g,(l,)>0, i=1,., n—1.

=1

We set v=(y,.., V,) Since }, j',-g,,du<0, we have {x,v>>0 which
shows that (4) holds. The converse implication is obvious. To complete the
proof we have to show that (5) fails. We set

G()=(g (1) gy 111)) for all e T.

Since u is a strictly positive measure, if follows from (1) that there does not
exist a vector e R” ' such that

(G, 7>>0  forall teT.
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Since T is compact and the function
t—)(gl([)"“vgn l(r))

is continuous on T, {G(r): te T} is a compact subset of R” '. Therefore by
Lemma 7 we have

Oeconv({G(t):teT}).

Moreover, since T has at most n— | components, the set {G(t): te T} has
at most n— 1 components. Therefore by Egglestone [3, p. 35] there exist
points ¢,,.... t, ., € T such that

n

0€conv({5(t,): i=lo,n—1}).

Again by Lemma 7 there does not exist a function g € G such that

which shows that (5) fails. This proves Theorem 3.

In the following we will show that Theorem 3 and Corollary 4 are not
true if 7 has more than n— 1 components.

We first note that if an » — dimensional subspace G of C(T) contains a
strictly positive function, then there exists a basis {g,,..., g, } of G such that

J g;du=0, i=1,..n—1,
T

and

g.(1)>0 forall teT.

Therefore, in this case we can always argue with such a basis. Then the
proof of Theorem 3 yields the following result.

THEOREM 8. Let n22, G be an n-dimensional subspace of C(T), and
{1 &} be a basis of G such that

~

g:du=0, i=1l,.,n—1,
Jy

and

g.()>0 forall teT.
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Then the statements (1) (3) in Theorem 2 are equivalent 1o the following
statement:

(4) For all  points 1.1, €T there exists a  function
gespanig,,... g, | such that

g(t;)>0, i=lo.on—1.

If T has more than »— 1 components, then it is casy lo construct s-
dimensional subspaces G of ((T) for which condition (4) in Theorem 8
holds.

ExaMpLE 9. (1) Let T=[—-2,—1]u[l,2] and G=spang,,g-} be a
two-dimensional subspace of ((T), defined by g, (s)=1 for all 1e T and
g>=1. Then condition (4) in Theorem 8 is satisfied. In particular all best
approximations from G are strongly unique and G does not admit a
quadrature formula as in Theorem 2.

(2) The space /1" = {(xXy... X, ): v, real, 7= 1.... m} endowed with the
norm

m

‘j('\.l vy ~\’m )M 1= Z }~\‘, ‘
i-1
is a space of type C(T) endowed with the L,-norm, where 7= {1,..m}.
Let G=span{g,, g, be a two-dimensional subspace of /" such that
g1 =(x(,.., X,,) has the property that x,#0, i= 1., m,and 37" , x,=0 and
g>=1{1,.., 1).Then also condition (4) in Theorem 8 is satisfied.

Remark 10. (1) For further unicity results on one-sided L, -
approximation in C[a. b] see, e.g. Sommer and Strauss [10] and
Niirnberger, Schumaker, Sommer, and Strauss [8].

(2) For further unicity results on semi-infinite optimization see. c.g.,
Brosowski [ 1], Hettich and Zencke [4], and Niirnberger [5].
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