Unicity in One-Sided L₁-Approximation and Quadrature Formulae

GÜNTHER NÜRNBERGER

Fakultät für Mathematik und Informatik, Universität Mannheim, 6800 Mannheim, West Germany

Communicated by G. Meinardus

Received September 27, 1984

It is shown that for each n-dimensional subspace G of C(T) which contains a strictly positive function there exists a quadrature formula with at most n-1 points and positive weights which is exact for all $g \in G$ ($n \ge 2$, T has at most n-1 components). Since unicity of best one-sided L_1 -approximations from G is equivalent to the non-existence of such quadrature formulae, a general non-unicity theorem is obtained. This result does not hold if T has more than n-1 components.

INTRODUCTION

The connection of unicity in one-sided L_1 -approximation with the existence of quadrature formulae is investigated. Let an n-dimensional subspace G of C(T) (T a compact metric space) which contains a strictly positive function and $f \in C(T)$ be given. A function $g_f \in G$ with $g_f \leqslant f$ is called a best one-sided L_1 -approximation of f if $||f-g_f||_1 \leqslant ||f-g||_1$ for all $g \in G$ with $g \leqslant f$.

Applying a characterization on unique solutions of semi-infinite optimization problems given in [7] to this approximation problem, the following characterization is obtained: Every $f \in C(T)$ has a unique (resp. strongly unique) best one-sided L_1 -approximation from G if and only if there does not exist a quadrature formula of at most n-1 points with positive weights which is exact for all $g \in G$.

We show that if $n \ge 2$ and T has at most n-1 components, then for each G there exists such a quadrature formula. By applying the above characterization we obtain a general non-unicity result on one-sided L_1 -approximation. Special cases of this theorem were proved for T = [a, b] and under the additional assumption that G is a Haar subspace by DeVore

[2], a subspace of splines by Pinkus [9], and a weak Chebyshev subspace by Strauss [11].

Finally, it is shown that the above results do not hold if T has more than n-1 components.

The main results in this paper have been presented in a talk at the GAMM meeting in 1984. An abstract of this talk is given in [6].

1. Preliminaries

We first recall a result on global unicity in semi-infinite optimization given in [7] which will be applied to one-sided L_1 -approximation. To do this we need the following notation.

For a compact metric space we denote by C(T) (resp. $C(T, \mathbb{R}^n)$) the space af all the continuous mappings $h: T \to \mathbb{R}$ (resp. $B: T \to \mathbb{R}^n$). Let $p \in \mathbb{R}^n$, $B \in C(T, \mathbb{R}^n)$, $f \in C(T)$, and $\sigma = (p, B, f)$ be given. We consider the corresponding linear *semi-infinite optimization problem LM*(σ).

Minimize
$$\langle p, x \rangle = \sum_{i=1}^{n} p_i x_i$$
 subject to $\langle B(t), x \rangle \leq f(t)$ for all $t \in T$.

The optimization problem $LM(\sigma)$ is said to satisfy the *Slater-condition* if there exists a vector $y \in \mathbb{R}^n$ such that

$$\langle B(t), y \rangle \langle f(t)$$
 for all $t \in T$.

We set $L = \{\sigma: LM(\sigma) \text{ has a solution and satisfies the Slater-condition} \}$. A solution $x \in \mathbb{R}^n$ of $LM(\sigma)$ is called *strongly unique* if there exists a constant K > 0 such that for all feasible points $y \in \mathbb{R}^n$ (i.e., $\langle B(t), y \rangle \leqslant f(t)$ for all $t \in T$),

$$\langle p, y \rangle \ge \langle p, x \rangle + K \|x - y\|_2.$$

The following unicity result was given in [7].

THEOREM 1. For a fixed vector $p \in \mathbb{R}^n$, $p \neq 0$, and a fixed mapping $B \in C(T, \mathbb{R}^n)$, $B \neq 0$, the following statements are equivalent:

- (1) For every $f \in C(T)$ with $\sigma = (p, B, f) \in L$ the optimization problem $LM(\sigma)$ has a unique solution.
- (2) For every $f \in C(T)$ with $\sigma = (p, B, f) \in L$ the optimization problem $LM(\sigma)$ has a strongly unique solution.

(3) There do not exist points $t_1,...,t_{n-1} \in T$ and real numbers $a_1,...,a_{n-1} \geqslant 0$ such that

$$-p = \sum_{i=1}^{n-1} a_i B(t_i).$$

It is well known that one-sided L_1 -approximation is a special semi-infinite optimization problem.

Let μ be a strictly positive measure on T (i.e., $\int_T f d\mu > 0$ for all $f \in C(T)$ with $f \geqslant 0$ and $f \neq 0$). Furthermore, let the L_1 -norm of a function $f \in C(T)$ be defined by

$$||f||_1 = \int_T |f| d\mu.$$

Now, let $G = \text{span}\{g_1, ..., g_n\}$ be an *n*-dimensional subspace of C(T) and $f \in C(T)$. The *one-sided* L_1 -approximation problem is to find a function $g_f \in G$ with $g_f \leq f$, called *best one-sided* L_1 -approximation of f from G, such that for all $g \in G$ with $g \leq f$,

$$||f-g||_1 \ge ||f-g_f||_1$$
.

A function $g_f \in G$ with $g_f \leqslant f$ is called a *strongly unique best one-sided* L_1 -approximation of f from G, if there exists a constant K > 0 such that for all $g \in G$ with $g \leqslant f$,

$$||f-g||_1 \ge ||f-g_f||_1 + K||g-g_f||_1.$$

It is easy to see that this approximation problem can be written as an optimization problem $LM(\sigma)$, where

$$p = \left(-\int_{T} g_{1} d\mu, ..., -\int_{T} g_{n} d\mu\right)$$

and

$$B(t) = (g_1(t),...,g_n(t)) \qquad \text{for all } t \in T.$$

Obviously, if G contains a strictly positive function, then $LM(\sigma)$ satisfies the Slater-condition for all $f \in C(T)$.

2. THE MAIN RESULTS

The following global unicity result on one-sided L_1 -approximation is an immediate consequence of Theorem 1.

THEOREM 2. For an n-dimensional subspace G of C(T) which contains a strictly positive function the following statements are equivalent:

- (1) Every $f \in C(T)$ has a unique best one-sided L_1 -approximation from G.
- (2) Every $f \in C(T)$ has a strongly unique best one-sided L_1 -approximation from G.
- (3) There do not exist points $t_1,...,t_{n-1} \in T$ and real numbers $a_1,...,a_{n-1} \ge 0$ such that

$$\int_{T} g \ d\mu = \sum_{i=1}^{n-1} a_{i} g(t_{i}) \qquad \text{for all } g \in G$$

(i.e., there does not exist a quadrature formula of at most n-1 points and with positive weights which is exact for all $g \in G$).

We now give a theorem on the existence of quadrature formulae as in Theorem 2 which will be proved later.

THEOREM 3. Let $n \ge 2$, T have at most n-1 components, and G be an n-dimensional subspace of C(T) which contains a strictly positive function. Then there exists a quadrature formula of at most n-1 points and with positive weights which is exact for all $g \in G$.

Combining Theorem 2 and Theorem 3 we immediately obtain the following general non-unicity result on one-sided L_1 -approximation.

- COROLLARY 4. Let $n \ge 2$, T have at most n-1 components, and G be an n-dimensional subspace of C(T) which contains a strictly positive function. Then there exists a function in C(T) which has more than one best one-sided L_1 -approximation from G.
- Remark 5. (1) Corollary 4 was proved in the special case when T = [a, b] and under the additional assumption that G is a Haar subspace by DeVore [2], that G is a subspace of splines by Pinkus [9], and that G is a weak Chebyshev subspace (i.e., each function $g \in G$ has at most n-1 sign changes) by Strauss [11]. Note that Haar subspaces and subspaces of splines are weak Chebyshev.
- (2) Theorem 2 shows that if G is a one-dimensional subspace of C(T) which contains a strictly positive function, then every $f \in C(T)$ has a strongly unique best one-sided L_1 -approximation from G.
- (3) Note that Corollary 4 is also valid for functions in several variables, e.g., for subspaces of polynomials or splines in several variables.

In the following we will give a proof of Theorem 3. To do this we need the following well-known results (see, e.g., Brosowski [1] and Hettich and

Zencke [4]). For a subset A of \mathbb{R}^n we denote by cone(A) the convex cone generated by A.

LEMMA 6 (Farkas). Let vectors $z_0, z_1, ..., z_m \in \mathbb{R}^n$ be given. Then the following statements are equivalent:

- (1) $z_0 \in \text{cone}(\{z_i: i=1,...,m\}).$
- (2) There does not exist a vector $y \in \mathbb{R}^n$ such that

$$\langle z_0, y \rangle < 0$$

and

$$\langle z_i, y \rangle \geqslant 0, \quad i = 1, ..., m.$$

For a subset A of \mathbb{R}^n we denote by conv(A) the convex hull of A.

LEMMA 7. For a compact subset Z of \mathbb{R}^n the following statements are equivalent:

- (1) $0 \in \operatorname{conv}(Z)$.
- (2) There does not exist a vector $y \in \mathbb{R}^n$ such that

$$\langle z, y \rangle > 0$$
 for all $z \in Z$.

Proof of Theorem 3. Since G contains a strictly positive function, we may choose a basis $\{\tilde{g}_1,...,\tilde{g}_n\}$ of G such that

$$\tilde{g}_n(t) > 0$$
 for all $t \in T$.

Since μ is a strictly positive measure, we have $\int_T \tilde{g}_n d\mu > 0$. Therefore, there exist real numbers $b_1, ..., b_{n-1}$ such that

$$\int_{T} (\tilde{g}_{i} + b_{i}\tilde{g}_{n}) d\mu = 0, \qquad i = 1, ..., n - 1.$$

We set $g_i = \tilde{g}_i + b_i \tilde{g}_n$, i = 1,..., n-1, and $g_n = \tilde{g}_n$. Then $\{g_1,...,g_n\}$ is a basis of G such that

(1)
$$\int_T g_i d\mu = 0, i = 1,..., n-1.$$

Then condition (3) in Theorem 2 says that

(2) there do not exist points $t_1,...,t_{n-1} \in T$ and real numbers $a_1,...,a_{n+1} \ge 0$ such that

$$\int_{T} g_{j} d\mu = \sum_{i=1}^{n-1} a_{i} g_{j}(t_{i}), \qquad j = 1, ..., n.$$

We set $x = (0,..., 0, \int_T g_n d\mu)$ and $G(t) = (g_1(t),..., g_n(t))$ for all $t \in T$. Then condition (2) is equivalent to the following condition:

(3) there do not exist points $t_1,...,t_{n-1} \in T$ such that

$$x \in \text{cone}(\{G(t_i): i = 1,..., n-1\}).$$

By Lemma 6 condition (3) is equivalent to the following condition:

(4) for all points $t_1,...,t_{n-1} \in T$ there exist a vector $y \in \mathbb{R}^n$ such that

$$\langle x, y \rangle < 0$$

and

$$\langle G(t_i), y \rangle \geqslant 0, \quad i = 1, ..., n-1.$$

We set $\widetilde{G} = \text{span}\{g_1,...,g_{n-1}\}$. Then condition (4) is equivalent to the following condition:

(5) for all points $t_1, ..., t_{n+1} \in T$ there exists a function $\tilde{g} \in \tilde{G}$ such that

$$\tilde{g}(t_i) > 0, \qquad i = 1, ..., n-1.$$

In fact, if (5) holds, then there exist real numbers $y_1,...,y_{n-1}$ such that

$$\sum_{i=1}^{n+1} y_i g_i(t_i) > 0, \qquad i = 1, ..., n-1.$$

Since $g_n(t) > 0$ for all $t \in T$, we may choose a sufficiently small negative number y_n such that

$$\sum_{i=1}^{n} y_i g_j(t_i) > 0, \qquad i = 1, ..., n-1.$$

We set $y = (y_1, ..., y_n)$. Since $y_n \int_T g_n d\mu < 0$, we have $\langle x, y \rangle > 0$ which shows that (4) holds. The converse implication is obvious. To complete the proof we have to show that (5) fails. We set

$$\tilde{G}(t) = (g_1(t), ..., g_{n-1}(t))$$
 for all $t \in T$.

Since μ is a strictly positive measure, if follows from (1) that there does not exist a vector $\tilde{y} \in \mathbb{R}^{n-1}$ such that

$$\langle \tilde{G}(t), \tilde{y} \rangle > 0$$
 for all $t \in T$.

Since T is compact and the function

$$t \to (g_1(t), ..., g_{n-1}(t))$$

is continuous on T, $\{\tilde{G}(t): t \in T\}$ is a compact subset of \mathbb{R}^{n-1} . Therefore by Lemma 7 we have

$$0 \in \operatorname{conv}(\{G(t): t \in T\}).$$

Moreover, since T has at most n-1 components, the set $\{\tilde{G}(t): t \in T\}$ has at most n-1 components. Therefore by Egglestone [3, p. 35] there exist points $t_1, ..., t_{n-1} \in T$ such that

$$0 \in \text{conv}(\{\tilde{G}(t_i): i = 1,..., n-1\}).$$

Again by Lemma 7 there does not exist a function $\tilde{g} \in \tilde{G}$ such that

$$\tilde{g}(t_i) > 0, \quad i = 1, ..., n-1,$$

which shows that (5) fails. This proves Theorem 3.

In the following we will show that Theorem 3 and Corollary 4 are not true if T has more than n-1 components.

We first note that if an n – dimensional subspace G of C(T) contains a strictly positive function, then there exists a basis $\{g_1,...,g_n\}$ of G such that

$$\int_{T} g_{i} d\mu = 0, \qquad i = 1, ..., n - 1,$$

and

$$g_n(t) > 0$$
 for all $t \in T$.

Therefore, in this case we can always argue with such a basis. Then the proof of Theorem 3 yields the following result.

THEOREM 8. Let $n \ge 2$, G be an n-dimensional subspace of C(T), and $\{g_1,...,g_n\}$ be a basis of G such that

$$\int_{T} g_{i} d\mu = 0, \qquad i = 1, ..., n - 1,$$

and

$$g_n(t) > 0$$
 for all $t \in T$.

Then the statements (1) (3) in Theorem 2 are equivalent to the following statement:

(4) For all points $t_1,...,t_{n-1} \in T$ there exists a function $g \in \text{span}\{g_1,...,g_{n-1}\}$ such that

$$g(t_i) > 0,$$
 $i = 1,..., n-1.$

If T has more than n-1 components, then it is easy to construct n-dimensional subspaces G of C(T) for which condition (4) in Theorem 8 holds.

EXAMPLE 9. (1) Let $T = [-2, -1] \cup [1, 2]$ and $G = \text{span}\{g_1, g_2\}$ be a two-dimensional subspace of C(T), defined by $g_1(t) = t$ for all $t \in T$ and $g_2 = 1$. Then condition (4) in Theorem 8 is satisfied. In particular all best approximations from G are strongly unique and G does not admit a quadrature formula as in Theorem 2.

(2) The space $l_1^m = \{(x_1, ..., x_m): x_i \text{ real}, i = 1, ..., m\}$ endowed with the norm

$$\|(x_1,...,x_m)\|_1 = \sum_{i=1}^m \|x_i\|$$

is a space of type C(T) endowed with the L_1 -norm, where $T = \{1,..., m\}$.

Let $G = \text{span}\{g_1, g_2\}$ be a two-dimensional subspace of l_1^m such that $g_1 = (x_1, ..., x_m)$ has the property that $x_i \neq 0$, i = 1, ..., m, and $\sum_{i=1}^m x_i = 0$ and $g_2 = (1, ..., 1)$. Then also condition (4) in Theorem 8 is satisfied.

Remark 10. (1) For further unicity results on one-sided L_1 -approximation in C[a, h] see, e.g., Sommer and Strauss [10] and Nürnberger, Schumaker, Sommer, and Strauss [8].

(2) For further unicity results on semi-infinite optimization see, e.g., Brosowski [1], Hettich and Zencke [4], and Nürnberger [5].

REFERENCES

- B. Brosowski, "Parametric Semi-Infinite Optimization." Verlag Peter Lang, Frankfurt. 1982
- 2. R. DEVORE, One-sided approximation of functions, J. Approx. Theory 1 (1968), 11-15.
- 3. H. G. EGGLESTONE, Convexity, Cambridge, Univ. Press, London/New York, 1958.
- R. HETTICH AND H. ZENCKE, "Numerische Methoden der Approximation und semiinfiniten Optimierung," Teuber, Stuttgart, 1982.
- G. NÜRNBERGER, Unicity in semi-infinite optimization, in "Parametric Optimization and Approximation, Oberwolfach 1983" (B. Brosowski and F. Deutsch, Eds.), pp. 231–247. ISNM 72, Birkhäuser Verlag, Basel, 1985.
- G. NÜRNBERGER, Global unicity in optimization and approximation, Z. Angew. Math. Mech. 65 (1984–85), T 285.

- 7. G. NÜRNBERGER, Global unicity in semi-infinite optimization, *Numer. Funct. Anal. Optim.*, to appear.
- 8. G. NÜRNBERGER, L. L. SCHUMAKER, M. SOMMER AND H. STRAUSS, Approximation by generalized splines, *J. Math. Anal. Appl.*, to appear.
- 9. A. PINKUS, One-sided L¹-approximation by splines with fixed knots, *J. Approx. Theory* **18** (1976), 130–135.
- M. SOMMER AND H. STRAUSS, Unicity of best one-sided L₁-approximations for certain classes of spline functions, *Numer. Funct. Anal. Optim.* 4 (1981–82), 413–435.
- 11. H. STRAUSS, Unicity of best one-sided L_1 -approximation, *Numer. Math.* **40** (1982), 229–243.