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It is shown that for each n-dimensional subspace G of C( Ti which contains a

strictly positive function there exists a quadrature formula with at most n- I points
and positive weights which is exact for all g E G (n;' 2. T has at most n - 1 com­
ponents). Since unicity of hest one-sided L ,-approximations from (j is equivalent to

the non-existence of such quadrature formulae, a general non-unicity theorem is
ohtained. This result does not hold if T has more than n - I components. f ,9,'
'\cadernic Press, Inc

11'<TRODUCTI01'<

The connection of unicity in one-sided L,-approximation with the
existence of quadrature formulae is investigated, Let an n-dimensional sub­
space G of C( T) (T a compact metric space) which contains a strictly
positive function and /E C( T) be given, A function grE G with gj'S/ is
called a best one-sided L,-approximation of/if II/-grll, 'SII/-gil, for all
g E G with g'Sf

Applying a characterization on unique solutions of semi-infinite
optimization problems given in [7J to this approximation problem, the
following characterization is obtained: Every /E C( T) has a unique (resp.
strongly unique) best one-sided L,-approximation from G if and only if
there does not exist a quadrature formula of at most 11 - 1 points with
positive weights which is exact for all g E G,

We show that if n ? 2 and T has at most n - 1 components, then for each
G there exists such a quadrature formula, By applying the above charac­
terization we obtain a general non-unicity result on one-sided L ,­
approximation, Special cases of this theorem were proved for T = [a, hJ
and under the additional assumption that G is a Haar subspace by DeYore
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[2]. a subspace of splines by Pinkus [9J, and a weak Chebyshev subspace
by Strauss [II].

Finally, it is shown that the above results do not hold if T has more than
/l - 1 components.

The main results in this paper have been presented in a talk at the
GAMM meeting in 1984. An abstract of this talk is given in [6 J.

1. PRELIMINARIES

We first recall a result on global unicity in semi-infinite optimization
given in [7J which will be applied to one-sided LJ-approximation. To do
this we need the following notation.

For a compact metric space we denote by C( T) (resp. C( T. R" )) the
space af all the continuous mappings h: T -> R (resp. B: T -> !R:"). Let
p E !R:". BE C( T, W ),fE C( nand (J = (P. s../l be given. We consider the
corresponding linear semi-infinite optimi::ation prohlem LAf( (J).

Minimize (p.x>= I P,\, subject to
, I

(B(t l.v >~ j(t) for all t E T.

The optimization problem U'vf( (J) is said to satisfy the Slater-co/ldition if
there exists a vector y E !R:" such that

( B(t l, )" ><fl t) for all t E T.

We set L = [(J: LM( (J) has a solution and satisfies the Slater-condition:. A
solution x E !R:" of LM( (J) is called strongl\' unique if there exists a constant
K> 0 such that for all feasible points y E R" (i.e.. (B( t). )" >~ jl t) for all
t E T),

(p, \'> :;;, (P. x> + K .\ \'

The following unicity result was given in [7].

THEOREM I. For a jixed I'ector P E !R:". p i= O. and a jixed mapping

BE C( T, !R:"), B i= 0, the j<J!loll'ing statements are equi/'alent:

(1) For erer\, IE C( T) Ifith (J = (p, BJ) E L the optimi::ation prohlem

LM( (J) has a unique soilltion.

(2) For ererr IE C( T) Ifith (J = (p, BJ) E L the optimi::atio/l prohlem
Llyl( (J) has a strongly unique solution.
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(3) There do not exist points t I"'" til lET and real numhers
a l , ... , all I ~ 0 such that

II I

-p = I a;B(t;).
ic-c 1

It is well known that one-sided L I-approximation is a special semi­
infinite optimization problem.

Let fl be a strictly positive measure on T (i.e., hIdfl > 0 for all IE C( T)
with f~ 0 and I i= 0). Furthermore, let the L I-norm of a function IE C( T)
be defined by

r

II.fIIl = I II I dfl·
, 1

Now, let G = span{gl ,... , gil} be an n-dimensional subspace of C(T) and
fE C( T). The one-sided L I-approximation prohlem is to find a function
gj E G with gj~I, called hest one-sided LI-approximation of I from G, such
that for all g E G with g ~f;

A function gjE G with gj~f is called a strongly unique hest one-sided L I ­

approximation off from G, if there exists a constant K> 0 such that for all
g E G with g ~f:

It is easy to see that this approximation problem can be written as an
optimization problem LM(rJ), where

and

B(t) = (gl(t), ... ,gll (t)) for all t E T.

Obviously, if G contains a strictly positive function, then LM( rJ) satisfies
the Slater-condition for all IE C( T).

2. THE MAIN RESULTS

The following global unicity result on one-sided L I-approximation is an
immediate consequence of Theorem 1.

(AO 45 q,
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THEOREM 2. For an n-dimensional suhspace G of C( T) which contains a
strictly positive function the follml'inR statements are equivalent:

(I) Every fE C( T) has a unique hest one-sided L I-approximation Fom
G.

(2) Every fE C( T) has a stronglr unique hest one-sided L 1­

approximation from G.

(3) There do not exist points t 1"'" tn lET and real numhers
a l , .. ·, an J?O such that

~ !I I

I Rdf1= L a,R(ti)
"1' /---, I

j(ir all g E G

(i.e., there does not exist a quadrature jimnula of at most n - I points and
H'ith positive weights which is exact jiJr all g E G).

We now give a theorem on the existence of quadrature formulae as in
Theorem 2 which will be proved later.

THEOREM 3. Let n ? 2, T have at most II - I components, and G he an n­
dimensional suhspace 0/ C( T) which contains a slrictlr positive limctioll.
Then there exists a quadrature fimnula of at most n - 1 points and with
positive weights which is exact for all g E G.

Combining Theorem 2 and Theorem 3 we immediately obtain the follow­
ing general non-unicity result on one-sided L I-approximation.

COROLLARY 4. Let n ? 2, T have at most n - I components. alld G he all
n-dimensional subspace 0/ C( T) ll'hich contains a strictly positive function.
Then there exists a function in C( T) which has more than one best one-sided
L i-approximation from G.

Remark 5. ( I ) Corollary 4 was proved in the special case when
T = [a, b] and under the additional assumption that G is a Haar subspace
by DeVore [2], that G is a subspace of splines by Pinkus [9], and that G
is a weak Chebyshev subspace (i.e., each function g E G has at most II - I
sign changes) by Strauss [II]. Note that Haar subspaces and subspaces of
splines arc weak Chebyshev.

(2) Theorem 2 shows that if G is a one-dimensional subspace of C( T)
which contains a strictly positive function, then every IE C( T) has a
strongly unique best one-sided L I-approximation from G.

(3) Note that Corollary 4 is also valid for functions in several
variables, e.g., for subspaces of polynomials or splines in several variables.

In the following we will give a proof of Theorem 3. To do this we need
the following well-known results (see, e.g., Brosowski [I] and Hettich and
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Zencke [4]). For a subset A of [RII we denote by cone(A) the conv,ex cone
generated by A.

LEMMA 6 (Farkas). Let vectors :(j,: 1, ... , :m E [R" be given. Then the
following statements are equivalent:

(I) :oEcone({:,:i=I,...,m}).

(2) There does not exist a vector y E [R" such that

and

i= I,... ,m.

For a subset A ol[RII we denote by conv(A) the convex hull of A.

LEMMA 7. For a compact subset Z of [RII the following statements are
equivalent:

(I) 0 E conv(Z).

(2) There does not exist a vector y E [R" such that

<:,y»O for all : E Z.

Proof of Theorem 3. Since G contains a strictly positive function, we
may choose a basis {g 1'"'' gIl } of G such that

g,,(t»O for all t E T.

Since fl is a strictly positive measure, we have JT gil dfl> O. Therefore, there
exist real numbers b1, ... , b" 1 such that

i= I, ..., n-J.

We set gi=gi+big", i= I, ..., n~ I, and gll=g". Then {gt,... ,g,,} is a basis
of G such that

(I) Jrgidfl=O, i=I, ...,n~J.

Then condition (3) in Theorem 2 says that

(2) there do not exist points t t , ... , tIl lET and real numbers
at ,... , a" t ~O such that

" 1J.gjdp =I aigj(t,),
7 , ~ 1

j= I,... , n.
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We set x=(O, ... , 0, flg"dJ.1) and G(t)=(gdrj, ... ,gll(t)) for all lET. Then
condition (2) is equ'ivalent to the following condition:

(3) there do not exist points II"'" In lET such that

X E cone( (G( II): i = I, ... , n - I : ).

By Lemma 6 condition (3) is equivalent to the following condition:

(4) for all points II"'" III lET there exist a vector l' E [R;II such that

(X,1') <0

and

(G(ti)'Y)~O, i= 1, ... , n-1.

We set C=span{gj, ... ,g" I}' Then condition (4) is equivalent to the
following condition:

(5) for all points II"'" I" lET there exists a function II E C such that

i = 1,..., n - 1.

In fact, if (5) holds, then there exist real numbers 1'1'"'' YII I such that

II I

L y/g/(tl) > 0,
i= I

i = I, ... , n - 1.

Since gn(t»O for all IE T, we may choose a sufficiently small negative
number Yn such that

"L y/g/(tl) > 0,
I I

i = I,... , n -- I.

We set Y=(YI""'Y")' Since YnJrglldJ.1<O, we have (x,y»O which
shows that (4) holds. The converse implication is obvious. To complete the
proof we have to show that (5) fails. We set

C(t) = (gl (I), ... , gIl I (t)) for all lET.

Since J.1 is a strictly positive measure, if follows from (I ) that there does not
exist a vector ,v E [R;" I such that

for all lET.
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Since T is compact and the function

t ---+ (g, (t ), ..., gil ,(t))
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is continuous on T, {C(t): t E T} is a compact subset of [R" ',Therefore by
Lemma 7 we have

°E conv( {G(t): t E T}).

Moreover, since T has at most n - I components, the set {C( t): t E T} has
at most n - 1 components. Therefore by Egglestone [3, p. 35J there exist
points t, ,... , til lET such that

°E conv( {C(ti): i = I, ..., n - 1}).

Again by Lemma 7 there does not exist a function gE C such that

g(ti) > 0, i= I, ... , n-I,

which shows that (5) fails. This proves Theorem 3.
In the following we will show that Theorem 3 and Corollary 4 are not

true if T has more than n - 1 components.
We first note that if an n-dimensional subspace G of C( T) contains a

strictly positive function, then there exists a basis {g, ,..., gil } of G such that

and

Lg,d/-l=O,

gll(t»O

i= I, ...,n~ I,

for all t E T

Therefore, in this case we can always argue with such a basis. Then the
proof of Theorem 3 yields the following result.

THEOREM 8. Let n): 2, G be an n-dimensional subspace at' q T), and
(gl ,... , gil} be a basis ot' G such that

and

gll(t»O

i= I,... , n-I,

/iJr all t E T.
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Then the statements (I) (3) in Theorem 2 are equivalent to the jiJI!Olring
statement:

(4) For all points t I •...• t" JET there e.yists a jimction
gEspan{gl, .. ·,g" I j such thar

i= I ..... n-I.

If T has more than n - 1 components, then it is casy to construct n­
dimensional subspaces G of C( T) for which condition (4) in Theorem ~

holds.

EXAMPLE 9. ( I) Let T = [ - 2, - 1Ju [I, 2J and G = span: g I' g c : be a
two-dimensional subspace of C( T). defined by g I(t) = t for all t E T and
gc = 1. Then condition (4) in Theorem 8 is satisfied. In particular all best
approximations from G are strongly unique and G does not admit a
quadrature formula as in Theorem 2.

(2) The space It = [(x I..... X/II l: Xl real, i = I ..... m: endowed with the
norm

II(x l •· .. , X/II))I I = I IXil
i-I

is a space of type C( T) endowed with the L I-norm, where T = [I, .... m :.
Let G = span{gl' gc} be a two-dimensional subspace of I;n such that

g I = (x I, ... , X/II ) has the property that Xl i= 0, i = I,.... m, and It I Xl = °and
g 1 = (1, ... , 1).Then also condition (4) in Theorem 8 is satisfied.

Remark 10. (I) For further unicity results on one-sided L j ­

approximation in C[a. h J see. e.g.. Sommer and Strauss [10 J and
Nurnberger. Schumaker. Sommer, and Strauss [8].

(2) For further unicity results on semi-infinite optimization see, e.g..
Brosowski [IJ. Hettich and Zencke [4J. and Nurnberger [5].
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